Proponiamo due disposizioni circuitali molto utilizzate in pratica, che permettono di limitare le sovratensioni all’interuzione dei circuiti induttivi.
Campo Magnetico
Apertura di un circuito induttivo
Il circuito di fig. 6.3 a), chiuso da tempo illimitato, è percorso dalla corrente I = E/R e l’energia immagazzinata nell’induttore vale W= 1/2 LI2.
Transitori nei circuiti R – L
Consideriamo il circuito di fig. 6.1, dove un conduttore di induttanza L e di resistenza R L è alimentato da una rete lineare comunque complessa schematizzata, secondo il teorema di Thévenin, dalla serie di un generatore di tensione ideale e di una resistenza equivalente R,,,. La resistenza totale del circuito, vista dall’induttanza, risulta
Forza di attrazione di un elettromagnete
L’elettromagnete di fig. 5.6a è alimentato da un generatore di corrente. Sappiamo per esperienza che esso esercita una forza di attrazione sull’ancora mobile di ferro: ci proponiamo ora di calcolarne il valore.
Correnti parassite
Rapide variazioni di flusso inducono tensioni nello spazio e nei materiali circostanti (vedersi articolo «Calcolo della tensione indotta come variazione di flusso»). Anche nei nuclei magnetici interessati da flussi variabili nel tempo vengono indotte tensioni come in fig. 5.4.
Perdite per isteresi
Nell’articolo «Energia nei circuiti magnetici» si è dimostrato che il circuito magnetico restituisce tutta l’energia immagazzinata se la caratteristica di magnetizzazione viene percorsa identicamente nei due sensi.
Energia nei circuiti magnetici
Nella disposizione sperimentale di fig. 5.1 si suppone che l’avvolgimento sia privo di resistenza ed abbia N spire; la caratteristica del circuito magnetico è data dal grafico a).
Caratteristica dei circuiti magnetici in parallelo
Nel circuito magnetico di fig. 4.14 il flusso si suddivide nei due tronchi in parallelo, indicati con 1 e 2, dei quali sono note le caratteristiche, riportate nelle figure a) e b). Il tronco 2 è composto a sua volta da più parti in serie, e ne viene data la caratteristica totale, la quale, a causa dell’ampio traferro, presenta un ginocchio poco pronunciato.
Caratteristica dei circuiti magnetici in serie
Raramente un circuito magnetico è omogeneo come quello visto al paragrafo precedente; molto più spesso i circuiti magnetici sono composti da più tronchi diversi nelle dimensioni e nei materiali di cui sono costituiti.
Calcolo dei circuiti magnetici
Prendiamo ancora in esame il circuito magnetico toroidale omogeneo illustrato in fig. 4.2 illustrato nell’articolo caratteristica di magnetizzazione; il materiale che ne costituisce il nucleo presenta la caratteristica H-B riportata in fig. 4.10 a).